[1] Yu, Y.; Wuttig, M. Metavalent bonding impacts charge carrier transport across grain boundaries. Nano Res. Energy 2023, 1, e9120057.

[2] Wu, R.; Yu, Y.; Jia, S.; Zhou, C.; Cojocaru-Miredin, O.; Wuttig, M. Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding. Nat. Commun. 2023, 14, 719.

[3] Wang, Z.; Ding, L.; Liu, L.; Tan, Z.; Pan, H.; Jiang, P.; Wu, W.; Yu, Y. Grain boundary complexions formed by chemical plating of Cu enhance the thermoelectric properties of Sn0.94Mn0.09Te. Scr. Mater. 2023, 228, 115315.

[4] Hu, L.; Duan, B.; Lyu, T.; Lin, N.; Zhang, C.; Liu, F.; Li, J.; Wuttig, M.; Yu, Y. In Situ Design of High‐Performance Dual‐Phase GeSe Thermoelectrics by Tailoring Chemical Bonds. Adv. Funct. Mater. 2023, 2214854.

[5] Zhang, Q.; Lin, Y.; Lin, N.; Yu, Y.; Liu, F.; Fu, C.; Ge, B.; Cojocaru-Mirédin, O.; Zhu, T.; Zhao, X. Enhancing the room temperature thermoelectric performance of n-type Bismuth-telluride-based polycrystalline materials by low-angle grain boundaries. Mater. Today Phys. 2022, 22, 100573.

[6] Zhang, C.; Yan, G.; Wang, Y.; Wu, X.; Hu, L.; Liu, F.; Ao, W.; Cojocaru‐Mirédin, O.; Wuttig, M.; Snyder, G. J.; Yu, Y. Grain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to High‐Performance GeTe Thermoelectric Devices. Adv. Energy Mater. 2022, 13, 2203361.

[7] Yu, Y.; Zhou, C.; Zhang, X.; Abdellaoui, L.; Doberstein, C.; Berkels, B.; Ge, B.; Qiao, G.; Scheu, C.; Wuttig, M.; Cojocaru-Mirédin, O.; Zhang, S. Dynamic doping and Cottrell atmosphere optimize the thermoelectric performance of n-type PbTe over a broad temperature interval. Nano Energy 2022, 101, 107576.

[8] Wu, Y.; Qiu, P.; Yu, Y.; Xiong, Y.; Deng, T.; Cojocaru-Mirédin, O.; Wuttig, M.; Shi, X.; Chen, L. High-performance and stable AgSbTe2-based thermoelectric materials for near room temperature applications. Journal of Materiomics 2022, 8, 1095-1103.

[9] Wang, J.-J.; Sun, S.; Lu, L.; Du, H.; Jia, C.-L.; Cojocaru-Mirédin, O.; Yang, J.; Liu, G.; Zhou, C.; Qiao, G.; Shi, Z.; Ma, E.; Ge, B.; Yu, Y.; Wuttig, M.; Zhang, W. Enhancing the thermoelectric performance of β-Zn4Sb3 via progressive incorporation of Zn interstitials. Nano Energy 2022, 104, 107967.

[10] Shu, R.; Han, Z.; Elsukova, A.; Zhu, Y.; Qin, P.; Jiang, F.; Lu, J.; Persson, P. O. A.; Palisaitis, J.; le Febvrier, A.; Zhang, W.; Cojocaru-Miredin, O.; Yu, Y.; Eklund, P.; Liu, W. Solid-State Janus Nanoprecipitation Enables Amorphous-Like Heat Conduction in Crystalline Mg3Sb2 -Based Thermoelectric Materials. Adv. Sci. 2022, 9, 2202594.

[11] Liu, Y.; Zhang, X.; Nan, P.; Zou, B.; Zhang, Q.; Hou, Y.; Li, S.; Gong, Y.; Liu, Q.; Ge, B.; Cojocaru‐Mirédin, O.; Yu, Y.; Zhang, Y.; Chen, G.; Wuttig, M.; Tang, G. Improved Solubility in Metavalently Bonded Solid Leads to Band Alignment, Ultralow Thermal Conductivity, and High Thermoelectric Performance in SnTe. Adv. Funct. Mater. 2022, 2209980.

[12] Liu, Y.; Calcabrini, M.; Yu, Y.; Lee, S.; Chang, C.; David, J.; Ghosh, T.; Spadaro, M. C.; Xie, C.; Cojocaru-Miredin, O.; Arbiol, J.; Ibanez, M. Defect Engineering in Solution-Processed Polycrystalline SnSe Leads to High Thermoelectric Performance. ACS Nano 2022, 16, 78-88.

[13] Zhou, C.; Lee, Y. K.; Yu, Y.; Byun, S.; Luo, Z. Z.; Lee, H.; Ge, B.; Lee, Y. L.; Chen, X.; Lee, J. Y.; Cojocaru-Miredin, O.; Chang, H.; Im, J.; Cho, S. P.; Wuttig, M.; Dravid, V. P.; Kanatzidis, M. G.; Chung, I. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 2021, 20, 1378-1384.

[14] Zhang, C.; Geng, X.; Chen, B.; Li, J.; Meledin, A.; Hu, L.; Liu, F.; Shi, J.; Mayer, J.; Wuttig, M.; Cojocaru-Miredin, O.; Yu, Y. Boron-Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N-Type Bi2Te3. Small 2021, 17, 2104067.

[15] Yin, Z.; Liu, Z.; Yu, Y.; Zhang, C.; Chen, P.; Zhao, J.; He, P.; Guo, X. Synergistically Optimized Electron and Phonon Transport of Polycrystalline BiCuSeO via Pb and Yb Co-Doping. ACS Appl. Mater. Interfaces 2021, 13, 57638-57645.

[16] Wang, J.; Zhou, C.; Yu, Y.; Zhou, Y.; Lu, L.; Ge, B.; Cheng, Y.; Jia, C.-L.; Mazzarello, R.; Shi, Z.; Wuttig, M.; Zhang, W. Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. Nano Energy 2021, 79, 105484.

[17] Male, J. P.; Abdellaoui, L.; Yu, Y.; Zhang, S.; Pieczulewski, N.; Cojocaru‐Mirédin, O.; Scheu, C.; Snyder, G. J. Dislocations Stabilized by Point Defects Increase Brittleness in PbTe. Adv. Funct. Mater. 2021, 31, 2108006.

[18] Luo, T.; Serrano-Sánchez, F.; Bishara, H.; Zhang, S.; Villoro, B.; Kuo, J. J.; Felser, C.; Scheu, C.; Snyder, G. J.; Best, J. P.; Dehm, G.; Yu, Y.; Raabe, D.; Fu, C.; Gault, B. Dopant-segregation to grain boundaries controls electrical conductivity of n-type NbCo(Pt)Sn half-Heusler alloy mediating thermoelectric performance. Acta Mater. 2021, 217, 117147.

[19] Luo, T.; Kuo, J. J.; Griffith, K. J.; Imasato, K.; Cojocaru‐Mirédin, O.; Wuttig, M.; Gault, B.; Yu, Y.; Snyder, G. J. Nb‐Mediated Grain Growth and Grain‐Boundary Engineering in Mg3Sb2‐Based Thermoelectric Materials. Adv. Funct. Mater. 2021, 31, 2100258.

[20] Liu, Y.; Calcabrini, M.; Yu, Y.; Genc, A.; Chang, C.; Costanzo, T.; Kleinhanns, T.; Lee, S.; Llorca, J.; Cojocaru-Miredin, O.; Ibanez, M. The Importance of Surface Adsorbates in Solution-Processed Thermoelectric Materials: The Case of SnSe. Adv. Mater. 2021, 33, 2106858.

[21] Bai, G.; Yu, Y.; Wu, X.; Li, J.; Xie, Y.; Hu, L.; Liu, F.; Wuttig, M.; Cojocaru‐Mirédin, O.; Zhang, C. Boron Strengthened GeTe‐Based Alloys for Robust Thermoelectric Devices with High Output Power Density. Adv. Energy Mater. 2021, 11, 2102012.

[22] An, D.; Wang, J.; Zhang, J.; Zhai, X.; Kang, Z.; Fan, W.; Yan, J.; Liu, Y.; Lu, L.; Jia, C.-L.; Wuttig, M.; Cojocaru-Mirédin, O.; Chen, S.; Wang, W.; Snyder, G. J.; Yu, Y. Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics. Energy Environ. Sci. 2021, 14, 5469-5479.

[23] Abdellaoui, L.; Chen, Z.; Yu, Y.; Luo, T.; Hanus, R.; Schwarz, T.; Bueno Villoro, R.; Cojocaru‐Mirédin, O.; Snyder, G. J.; Raabe, D.; Pei, Y.; Scheu, C.; Zhang, S. Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. Adv. Funct. Mater. 2021, 31, 2101214.

[24] Zhou, C.; Yu, Y.; Zhang, X.; Cheng, Y.; Xu, J.; Lee, Y. K.; Yoo, B.; Cojocaru‐Mirédin, O.; Liu, G.; Cho, S. P.; Wuttig, M.; Hyeon, T.; Chung, I. Cu Intercalation and Br Doping to Thermoelectric SnSe2 Lead to Ultrahigh Electron Mobility and Temperature‐Independent Power Factor. Adv. Funct. Mater. 2020, 30, 1908405.

[25] Zhou, C.; Yu, Y.; Lee, Y. L.; Ge, B.; Lu, W.; Cojocaru-Miredin, O.; Im, J.; Cho, S. P.; Wuttig, M.; Shi, Z.; Chung, I. Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te. J. Am. Chem. Soc. 2020, 142, 15172-15186.

[26] Yu, Y.; Zhou, C.; Zhang, S.; Zhu, M.; Wuttig, M.; Scheu, C.; Raabe, D.; Snyder, G. J.; Gault, B.; Cojocaru-Mirédin, O. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Mater. Today 2020, 32, 260-274.

[27] Yu, Y.; Cagnoni, M.; Cojocaru-Mirédin, O.; Wuttig, M. Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Adv. Funct. Mater. 2020, 30, 1904862.

[28] Rodenkirchen, C.; Cagnoni, M.; Jakobs, S.; Cheng, Y.; Keutgen, J.; Yu, Y.; Wuttig, M.; Cojocaru‐Mirédin, O. Employing Interfaces with Metavalently Bonded Materials for Phonon Scattering and Control of the Thermal Conductivity in TAGS‐x Thermoelectric Materials. Adv. Funct. Mater. 2020, 30, 1910039.

[29] Bao, D.; Chen, J.; Yu, Y.; Liu, W.; Huang, L.; Han, G.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem. Eng. J. 2020, 388, 124295.

[30] An, D.; Chen, S.; Zhai, X.; Yu, Y.; Fan, W.; Zhang, T.; Liu, Y.; Wu, Y.; Wang, W.; Snyder, G. J. High-performance p-type elemental Te thermoelectric materials enabled by the synergy of carrier tuning and phonon engineering. J. Mater. Chem. A 2020, 8, 12156-12168.

[31] Pries, J.; Yu, Y.; Kerres, P.; Häser, M.; Steinberg, S.; Gladisch, F.; Wei, S.; Lucas, P.; Wuttig, M. Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge15Te85. physica status solidi (RRL) – Rapid Research Letters 2020, 15, 2000478.

[32] Wu, Y.; Yu, Y.; Zhang, Q.; Zhu, T.; Zhai, R.; Zhao, X. Liquid‐Phase Hot Deformation to Enhance Thermoelectric Performance of n‐type Bismuth‐Telluride‐Based Solid Solutions. Adv. Sci. 2019, 6, 1901702.

[33] Wang, X.-y.; Yu, J.; Zhao, R.-f.; Zhu, B.; Gao, N.; Xiang, B.; Yu, Y.; Zhang, K.-m.; Huang, Z.-y.; Zu, F.-q. Effects of melting time and temperature on the microstructure and thermoelectric properties of p-type Bi0.3Sb1.7Te3 alloy. J. Phys. Chem. Solids 2019, 124, 281-288.

[34] Kuo, J. J.; Yu, Y.; Kang, S. D.; Cojocaru-Miredin, O.; Wuttig, M.; Snyder, G. J. Mg Deficiency in Grain Boundaries of n‐Type Mg3Sb2 Identified by Atom Probe Tomography. Adv. Mater. Interfaces 2019, 6, 1900429.

[35] Abdellaoui, L.; Zhang, S.; Zaefferer, S.; Bueno-Villoro, R.; Baranovskiy, A.; Cojocaru-Mirédin, O.; Yu, Y.; Amouyal, Y.; Raabe, D.; Snyder, G. J.; Scheu, C. Density, distribution and nature of planar faults in silver antimony telluride for thermoelectric applications. Acta Mater. 2019, 178, 135-145.

[36] Michel, A. U.; Hessler, A.; Meyer, S.; Pries, J.; Yu, Y.; Kalix, T.; Lewin, M.; Hanss, J.; De Rose, A.; Mass, T. W. W.; Wuttig, M.; Chigrin, D. N.; Taubner, T. Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach. Adv. Mater. 2019, 31, 1901033.

[37] Cheng, Y.; Cojocaru-Miredin, O.; Keutgen, J.; Yu, Y.; Kupers, M.; Schumacher, M.; Golub, P.; Raty, J. Y.; Dronskowski, R.; Wuttig, M. Understanding the Structure and Properties of Sesqui-Chalcogenides (i.e., V2 VI3 or Pn2 Ch3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Adv. Mater. 2019, 31, 1904316.

[38] Zhu, B.; Huang, Z.-Y.; Wang, X.-Y.; Yu, Y.; Gao, N.; Zu, F.-Q. Enhanced thermoelectric properties of n-type direction solidified Bi 2 Te 2.7 Se 0.3 alloys by manipulating its liquid state. Scr. Mater. 2018, 146, 192-195.

[39] Zhou, C.; Yu, Y.; Lee, Y. K.; Cojocaru-Mirédin, O.; Yoo, B.; Cho, S.-P.; Im, J.; Wuttig, M.; Hyeon, T.; Chung, I. High-Performance n-Type PbSe–Cu2Se Thermoelectrics through Conduction Band Engineering and Phonon Softening. J. Am. Chem. Soc. 2018, 140, 15535-15545.

[40] Yu, Y.; Zhang, S.; Mio, A. M.; Gault, B.; Sheskin, A.; Scheu, C.; Raabe, D.; Zu, F.; Wuttig, M.; Amouyal, Y.; Cojocaru-Miredin, O. Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials. ACS Appl. Mater. Interfaces 2018, 10, 3609-3615.

[41] Wang, X.-y.; Wang, H.-j.; Xiang, B.; Shang, H.-j.; Zhu, B.; Yu, Y.; Jin, H.; Zhao, R.-f.; Huang, Z.-y.; Liu, L.-j.; Zu, F.-q.; Chen, Z.-g. Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy. J. Mater. Sci. 2018, 54, 4788-4797.

[42] Wang, X. Y.; Wang, H. J.; Xiang, B.; Fu, L. W.; Zhu, H.; Chai, D.; Zhu, B.; Yu, Y.; Gao, N.; Huang, Z. Y.; Zu, F. Q. Thermoelectric Performance of Sb2Te3-Based Alloys is Improved by Introducing PN Junctions. ACS Appl. Mater. Interfaces 2018, 10, 23277-23284.

[43] Sheskin, A.; Schwarz, T.; Yu, Y.; Zhang, S.; Abdellaoui, L.; Gault, B.; Cojocaru-Miredin, O.; Scheu, C.; Raabe, D.; Wuttig, M.; Amouyal, Y. Tailoring Thermoelectric Transport Properties of Ag-Alloyed PbTe: Effects of Microstructure Evolution. ACS Appl. Mater. Interfaces 2018, 10, 38994–39001.

[44] Huang, Z.-Y.; Zhang, H.; Yang, L.; Zhu, B.; Zheng, K.; Hong, M.; Yu, Y.; Zu, F.-Q.; Zou, J.; Chen, Z.-G. Achieving high thermoelectric performance of Ni/Cu modified Bi 0.5 Sb 1.5 Te 3 composites by a facile electroless plating. Mater. Today Energy 2018, 9, 383-390.

[45] Huang, Z.; Zhang, H.; Zheng, K.; Dai, X.; Yu, Y.; Cheng, H.; Zu, F.; Chen, Z.-G. Enhancing thermoelectric performance of Cu-modified Bi 0.5 Sb 1.5 Te 3 by electroless plating and annealing. Progress in Natural Science: Materials International 2018, 28, 218-224.

[46] Gao, N.; Zhu, B.; Wang, X.-y.; Yu, Y.; Zu, F.-q. Simultaneous optimization of Seebeck, electrical and thermal conductivity in free-solidified Bi0.4Sb1.6Te3 alloy via liquid-state manipulation. J. Mater. Sci. 2018, 53, 9107-9116.

[47] Zhu, M.; Cojocaru-Miredin, O.; Mio, A. M.; Keutgen, J.; Kupers, M.; Yu, Y.; Cho, J. Y.; Dronskowski, R.; Wuttig, M. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding. Adv. Mater. 2018, 30, 1706735.

[48] Zhu, B.; Yu, Y.; Wang, X.-y.; Zu, F.-q.; Huang, Z.-y. Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 semiconductor by manipulating its parent liquid state. J. Mater. Sci. 2017, 52, 8526-8537.

[49] Zhu, B.; Huang, Z.-Y.; Wang, X.-Y.; Yu, Y.; Yang, L.; Gao, N.; Chen, Z.-G.; Zu, F.-Q. Attaining ultrahigh thermoelectric performance of direction-solidified bulk n -type Bi 2 Te 2.4 Se 0.6 via its liquid state treatment. Nano Energy 2017, 42, 8-16.

[50] Yu, Y.; Wu, Z.; Cojocaru-Mirédin, O.; Zhu, B.; Wang, X.-Y.; Gao, N.; Huang, Z.-Y.; Zu, F.-Q. Dependence of Solidification for Bi2Te3−xSex Alloys on Their Liquid States. Sci. Rep. 2017, 7, 2463.

[51] Yu, Y.; He, D.-S.; Zhang, S.; Cojocaru-Mirédin, O.; Schwarz, T.; Stoffers, A.; Wang, X.-Y.; Zheng, S.; Zhu, B.; Scheu, C.; Wu, D.; He, J.-Q.; Wuttig, M.; Huang, Z.-Y.; Zu, F.-Q. Simultaneous optimization of electrical and thermal transport properties of Bi 0.5 Sb 1.5 Te 3 thermoelectric alloy by twin boundary engineering. Nano Energy 2017, 37, 203-213.

[52] Wang, X.; Yu, Y.; Zhu, B.; Gao, N.; Huang; Zhongyue; Xiang, B.; Zu, F. The Effect of SbI3 Doping on the Structure and Electrical Properties of n-Type Bi1.8Sb0.2Te2.85Se0.15 Alloy Prepared by the Free Growth Method. J. Electron. Mater. 2017, 47, 998-1002.

[53] Cojocaru-Miredin, O.; Abdellaoui, L.; Nagli, M.; Zhang, S.; Yu, Y.; Scheu, C.; Raabe, D.; Wuttig, M.; Amouyal, Y. Role of Nanostructuring and Microstructuring in Silver Antimony Telluride Compounds for Thermoelectric Applications. ACS Appl. Mater. Interfaces 2017, 9, 14779-14790.